谷氨酸发酵生产菌的研究与开发

刘森芝

(梅花生物科技集团股份有限公司 廊坊 065001)

L-谷氨酸微生物工业化发酵生产已有 50 余 年历史,回顾国内各味精厂曾使用过的菌种,主要 是 1.天津短杆菌;2.钝齿棒杆菌;3.北京棒杆菌及 它们的突变株。四目前厂家用葡萄糖发酵所使用 的菌种主要为天津短杆菌 T613 的突变株,有 FM820; FM84-415; FM-1 到 FM-20; S9114 等, 上 述生产菌种、主要是通过诱变为主的微生物育种 而获得、它的产酸能力伴随着谷氨酸发酵生产发 展获得了很大的提高。但如果在现有产酸能力情 况下,继续采用传统(经典)微生物育种技术(如诱 变、细胞融合等手段)选育菌种,以期达到大幅度 提高产酸率和糖酸转化率已变得相当困难。因此, 采用现代基因工程手段改造菌种,从而提高产酸 率和糖酸转化率不失为目前最有效的方法。但上 述菌种在基础研究方面的工作并不十分深入,甚 至是短杆菌还是棒杆菌在概念上也不十分清晰. 这无疑给用基因工程手段改造菌种带来一定的困 惑。

L-谷氨酸作为生产量最大的氨基酸之一,通 过改造菌种以提高产酸率和糖酸转化率具有很大 的经济意义。国内在谷氨酸菌种基因改造方面的 研究工作到目前为止基本上还属空白、国外在这 方面的研究工作已取得了一定的科研成果,但报 导不多,且菌种、生产工艺以及原料和国内技术有 所差别。根据国内现有生产菌种的特性,利用基因 工程手段改造生产菌种, 从而提高产酸率和糖酸 转化率,虽还需要一段时间的深入研究,但这种趋 势和研究结果显示,届以时日,谷氨酸的产酸率和 糖酸转化率定会有较大的突破。

目前,在棒杆菌中的表达质粒和针对谷氨酸 合成代谢途径中关键酶表达基因方面已做了一定 的工作,如果进一步利用基因工程手段在现有谷 氨酸生产菌种方面做更深入的研究就可达到提高 菌种的产酸率和糖酸转化率目的,并且不必对目

前的生产工艺和配方做过多的修改。

棒杆菌表达质粒的构建

目前国内的生产菌种产酸水平已很高。如果 撇开目前使用的生产菌种,而重新构建在基因工 程研究工作方面比较成熟的菌种,如大肠杆菌上 进行产谷氨酸基因重组,那构建的新菌种则很难 超越在谷氨酸代谢合成机理上已很有效的棒杆菌 的产酸水平,生产工艺也要变化,所以没有实际应 用价值。因此,选择在菌种的基础上进行基因重组 改造工作,以达到增强效果,使产酸率和糖酸转化 率水平更高。

在棒杆菌上进行基因重组、需要有能够表达 外源基因的载体质粒,但到目前为止国内外都没 有找到棒杆菌本身的内源性质粒可以作为载体质 粒,因此,构建一个大肠杆菌质粒经过与棒杆菌内 源的一些基因整合,并适合在棒杆菌内表达的穿 梭质粒成为研发的关键。

L-谷氨酸是由三羧酸循环的中间代谢产物 α -酮戊二酸转化而来的,如果增加三羧酸循环的 流量,就增加了 α -酮戊二酸的流量,也就可以增 加谷氨酸的产量。

据国外在野生型谷氨酸棒杆菌中通过对丙酮 酸羧化酶基因重组菌的研究报道,与野生型谷氨 酸棒杆菌相比,基因重组菌可以提高谷氨酸产量 7倍。

在谷氨酸棒杆菌中,作为碳源的葡萄糖分解 代谢提供菌生长所需要的能量及菌体和合成产物 的碳成分。一般葡萄糖代谢经果糖-6磷酸分解, 再经丙酮酸和乙酰 CoA 进入三羧酸循环进行代 谢,并经 α-酮戊二酸产生谷氨酸。理论上(不考虑 菌体生长及呼吸消耗) 一分子六碳的葡萄糖最终 产生一分子五碳的谷氨酸、理论糖酸转化率为 81.7%, 但实际生产过程中由于还有菌体生长和

呼吸能量需求,糖酸转化率为60%左右。

在这一谷氨酸合成代谢途径中,由丙酮酸转 化为乙酰 CoA 过程中释放一份 CO。 这使得葡萄 糖的利用率降低,葡萄糖——谷氨酸转化率也降 低。磷酸解酮酶(PKT)能使得这一份 CO, 不被释 放而浪费,它通过催化葡萄糖分解代谢中间产物 果糖-6磷酸为乙酰磷酸和赤藓糖-4磷酸,以及 催化木酮糖-5磷酸(木酮糖-5磷酸是棒杆菌本 身存在的 5 碳糖代谢路径合成转化的) 为甘油 醛-3 磷酸和乙酰磷酸,两步催化反应产生的乙酰 磷酸直接转化为乙酰 CoA,再由乙酰 CoA 进入三 羧酸循环。通过这一代谢途径可以绕过由丙酮酸 转化为乙酰 CoA 的途径,避免了丙酮酸转化为乙 酰 CoA 时释放 CO。而产生的碳损失,也即葡萄糖 的损失。通过这一 PKT 催化的代谢途径,理论上 5个葡萄糖分子能产生6个谷氨酸分子,理论转 化率从原来的 81.7%提高到 98%。国外有报道,利 用基因工程技术将 PKT 的表达基因重组进棒杆 菌中,能将谷氨酸生产时的糖酸转化率从60%提 高到 69%。

PKT(磷酸解酮酶)在谷氨酸棒杆菌中是不存 在的,从动物双岐杆菌中获得了 PKT 的结构基因 pk,并将它克隆到穿梭质粒 pJL23 中,通过接合转 化在谷氨酸棒杆菌中获得转化子。

有关的基因有耐高温相关基因、耐低溶氧相 关基因等, 重组含这些基因的菌种可以大大改善 生产工艺条件,降低生产成本。

- 2 谷氨酸菌种基因工程技术研究存在问题 的原因
- 2.1 传统产谷氨酸棒杆菌的高产量阻碍了谷氨 酸菌种基因工程技术的研究

谷氨酸由于处于比较接近于微生物基础代谢 的氨基酸,在棒杆菌中产量较高,通过微生物诱变 **育种方法相对干其它氨基酸来说可以较容易获得** 产量高的生产菌种,因而之前较少考虑采用基因 工程方法来提高菌种的产酸水平,也因此在应用 基因重组技术方面起步比其它氨基酸要晚。

2.2 谷氨酸代谢途径的复杂性

正是由于谷氨酸是比较接近于微生物基础代 谢的氨基酸,其合成分解代谢途径比较发达,影响 其合成和分解代谢的因素比较多,在它的合成代 谢途径中许多因素如酶和基因或者是多功能的或

者是作用还不明确。这对于利用基因工程技术改 变谷氨酸代谢途径以提高菌种的产量造成很大的 难度。到目前为止,许多影响因素还在继续进行基 础性的研究中,还不能直接应用到菌种的改造中去。 2.3 棒杆菌基因工程技术不完善性

早期在原核微生物中对大肠杆菌和枯草芽孢 杆菌以及真核微生物中对酵母菌的遗传背景比较 清楚,因而对这些菌的基因工程研究工作比较早。 而对棒杆菌属中一些种的遗传背景是近年来才开 始研究,对棒杆菌的基因工程研究工作相对落后, 到目前为止技术还不是非常成熟。以载体质粒为 例,目前在棒杆菌中应用的质粒都不是棒杆菌本 身的内源性质粒、都是人工构建的带有部分棒杆 菌遗传特征的外源质粒,因此在质粒启动复制、转 录调控和产物表达方面效率不高。而在产谷氨酸 菌种方面进行基因工程研究工作时,离开棒杆菌

3 谷氨发酵菌种基因工程技术研究的努 力方向

重新构建其它新的菌种很难有大的突破。

目前已有几个与谷氨酸代谢有关的关键酶和 与调控有关的蛋白的作用是明确的、每一个相对 应的基因克隆和剔除对提高谷氨酸的产量或糖酸 转化率都会有所帮助,但要比较明显的提高,需要 多个基因的串联表达,共同作用。

除了与谷氨酸代谢直接有关的基因工作外, 在与基因的表达调控有关的间接的基因重组工作 方面也需要进行,只有多因素、多方面基因重组研 究工作取得进展和成功应用、谷氨酸的产量和糖 酸转化率才会取得重大突破。

产谷氨酸棒杆菌的谷氨酸代谢途径中还有许 多影响因素没有搞清楚,需要进一步研究确定,这 也使得构建谷氨酸基因工程菌的进展比其它氨基酸 落后。国外在这方面的研究力度比较大,在国内这方面 基本上还是空白。这方面的工作还需持续深入进行。

4 谷氨酸发酵菌种基因工程技术的应用 前景

从目前研究进展来看,通过基因工程技术手 段寻求提高谷氨酸产酸水平是一条比较有效的途 径,可以肯定的是,基因工程技术在提高谷氨酸发 酵水平方面前景良好。